139 research outputs found

    Dynamical evolution of the Gliese 436 planetary system - Kozai migration as a potential source for Gliese 436b's eccentricity

    Full text link
    The close-in planet orbiting GJ 436 presents a puzzling orbital eccentricity considering its very short orbital period. Given the age of the system, this planet should have been tidally circularized a long time ago. Many attempts to explain this were proposed in recent years, either involving abnormally weak tides, or the perturbing action of a distant companion. We address here the latter issue based on Kozai migration. We propose that GJ 436b was formerly located further away from the star and that it underwent a migration induced by a massive, inclined perturber via Kozai mechanism. In this context, the perturbations by the companion trigger high amplitude variations to GJ 436b that cause tides to act at periastron. Then the orbit tidally shrinks to reach its present day location. We numerically integrate the 3-body system including tides and General Relativity correction. We first show that starting from the present-day location of GJ 436b inevitably leads to damping the Kozai oscillations and to rapidly circularizing the planet. Conversely, starting from 5-10 times further away allows the onset of Kozai cycles. The tides act in peak eccentricity phases and reduce the semi-major axis of the planet. The net result is an evolution characterized by two phases: a first one with Kozai cycles and a slowly shrinking semi-major axis, and a second one once the planet gets out of the Kozai resonance characterized by a more rapid decrease. The timescale of this process appears in most cases much longer than the standard circularization time of the planet by a factor larger than 50. This model can provide a solution to the eccentricity paradox of GJ 436b. Depending on the various orbital configurations, it can take several Gyrs to GJ 436b to achieve a full orbital decrease and circularization. According to this scenario, we could be witnessing today the second phase of the scenario where the semi-major axis is already reduced while the eccentricity is still significant. We then explore the parameter space and derive in which conditions this model can be realistic given the age of the system. This yields constraints on the characteristics of the putative companion.Comment: 13 pages To appear in Astronomy \& Astrophysic

    Unbiased mm-wave Line Surveys of TW Hya and V4046 Sgr: The Enhanced C2H and CN Abundances of Evolved Protoplanetary Disks

    Full text link
    We have conducted the first comprehensive mm-wave molecular emission line surveys of the evolved circumstellar disks orbiting the nearby T Tauri stars TW Hya and V4046 Sgr AB. Both disks are known to retain significant residual gaseous components, despite the advanced ages of their host stars. Our unbiased broad-band radio spectral surveys of the TW Hya and V4046 Sgr disks were performed with the Atacama Pathfinder Experiment (APEX) 12 meter telescope and are intended to yield a complete census of bright molecular emission lines in the range 275-357 GHz (1.1-0.85 mm). We find that lines of 12CO, 13CO, HCN, CN, and C2H, all of which lie in the higher-frequency range, constitute the strongest molecular emission from both disks in the spectral region surveyed. The molecule C2H is detected here for the first time in both disks, as is CS in the TW Hya disk. The survey results also include the first measurements of the full suite of hyperfine transitions of CN N=3-2 and C2H N=4-3 in both disks. Modeling of these CN and C2H hyperfine complexes in the spectrum of TW Hya indicates that the emission from both species is optically thick and may originate from very cold disk regions. It furthermore appears that the fractional abundances of CN and C2H are significantly enhanced in these evolved protoplanetary disks relative to the fractional abundances of the same molecules in the environments of deeply embedded protostars.Comment: 29 pages, 6 figures; to appear in Vol. 791 of The Astrophysical Journa

    An Unbiased 1.3 mm Emission Line Survey of the Protoplanetary Disk Orbiting LkCa 15

    Get PDF
    The outer (>30 AU) regions of the dusty circumstellar disk orbiting the ~2-5 Myr-old, actively accreting solar analog LkCa 15 are known to be chemically rich, and the inner disk may host a young protoplanet within its central cavity. To obtain a complete census of the brightest molecular line emission emanating from the LkCa 15 disk over the 210-270 GHz (1.4 - 1.1 mm) range, we have conducted an unbiased radio spectroscopic survey with the Institute de Radioastronomie Millimetrique (IRAM) 30 meter telescope. The survey demonstrates that, in this spectral region, the most readily detectable lines are those of CO and its isotopologues 13CO and C18O, as well as HCO+, HCN, CN, C2H, CS, and H2CO. All of these species had been previously detected in the LkCa 15 disk; however, the present survey includes the first complete coverage of the CN (2-1) and C2H (3-2) hyperfine complexes. Modeling of these emission complexes indicates that the CN and C2H either reside in the coldest regions of the disk or are subthermally excited, and that their abundances are enhanced relative to molecular clouds and young stellar object environments. These results highlight the value of unbiased single-dish line surveys in guiding future high resolution interferometric imaging of disks.Comment: 35 pages, 9 figures, accepted for publication in The Astrophysical Journa

    Near-infrared transmission spectrum of the warm-uranus GJ 3470b with the Wide Field Camera-3 on the Hubble Space Telescope

    Full text link
    The atmospheric composition of low-mass exoplanets is the object of intense observational and theoretical investigations. GJ3470b is a warm uranus recently detected in transit across a bright late-type star. The transit of this planet has already been observed in several band passes from the ground and space, allowing observers to draw an intriguing yet incomplete transmission spectrum of the planet atmospheric limb. In particular, published data in the visible suggest the existence of a Rayleigh scattering slope, making GJ3470b a unique case among the known neptunes, while data obtained beyond 2 um are consistent with a flat infrared spectrum. The unexplored near-infrared spectral region between 1 and 2 um, is thus key to undertanding the atmospheric nature of GJ3470b. Here, we report on the first space-borne spectrum of GJ3470, obtained during one transit of the planet with WFC3 on board HST, operated in stare mode. The spectrum covers the 1.1--1.7-um region with a resolution of about 300. We retrieve the transmission spectrum of GJ3470b with a chromatic planet-to-star radius ratio precision of 0.15% (about one scale height) per 40-nm bins. At this precision, the spectrum appears featureless, in good agreement with ground-based and Spitzer infrared data at longer wavelengths, pointing to a flat transmission spectrum from 1 to 5 um. We present new simulations of transmission spectra for GJ3470b, which allow us to show that the HST/WFC3 observations rule out cloudless hydrogen-rich atmospheres (>10 sigma) as well as hydrogen-rich atmospheres with tholin haze (>5 sigma). Adding our near-infrared measurements to the full set of previously published data from 0.3 to 5 um, we find that a cloudy, hydrogen-rich atmosphere can explain the full transmission spectrum if, at the terminator, the clouds are located at low pressures (<1 mbar) or the water mixing ratio is extremely low (<1 ppm).Comment: Astronomy & Astrophysics, in press. 19 figures. 2 table

    First results from the Canada-France High-z Quasar Survey: Constraints on the z=6 quasar luminosity function and the quasar contribution to reionization

    Full text link
    We present preliminary results of a new quasar survey being undertaken with multi-colour optical imaging from the Canada-France-Hawaii Telescope. The current data consists of 3.83 sq. deg. of imaging in the i' and z' filters to a 10 sigma limit of z'<23.35. Near-infrared photometry of 24 candidate 5.7<z<6.4 quasars confirms them all to be low mass stars including two T dwarfs and four or five L dwarfs. Photometric estimates of the spectral type of the two T dwarfs are T3 and T6. We use the lack of high-redshift quasars in this survey volume to constrain the z=6 quasar luminosity function. For reasonable values of the break absolute magnitude M*_1450 and faint-end slope alpha, we determine that the bright-end slope beta>-3.2 at 95% confidence. We find that the comoving space-density of quasars brighter than M_1450=-23.5 declines by a factor >25 from z=2 to z=6, mirroring the decline observed for high-luminosity quasars. We consider the contribution of the quasar population to the ionizing photon density at z=6 and the implications for reionization. We show that the current constraints on the quasar population give an ionizing photon density <<30% that of the star-forming galaxy population. We conclude that active galactic nuclei make a negligible contribution to the reionization of hydrogen at z~6.Comment: 9 pages, 6 figures, ApJ, in pres

    Probing the impact of stellar duplicity on the frequency of giant planets: Final results of our VLT/NACO survey

    Get PDF
    If it is commonly agreed that the presence of a (moderately) close stellar companion affects the formation and the dynamical evolution of giant planets, the frequency of giant planets residing in binary systems separated by less than 100 AU is unknown. To address this issue, we have conducted with VLT/NACO a systematic adaptive optics search for moderately close stellar companions to 130 nearby solar-type stars. According to the data from Doppler surveys, half of our targets host at least one planetary companion, while the other half show no evidence for short-period giant planets. We present here the final results of our survey, which include a new series of second-epoch measurements to test for common proper motion. The new observations confirm the physical association of two companion candidates and prove the unbound status of many others. These results strengthen our former conclusion that circumstellar giant planets are slightly less frequent in binaries with mean semimajor axes between 35 and 100 AU than in wider systems or around single star

    LP 714-37: A wide pair of ultracool dwarfs actually is a triple

    Get PDF
    LP 714-37 was identified by Phan-Bao et al. (2005) as one of the very few wide pairs of very low mass (VLM) stars known to date, with a separation of 33 AU. Here we present adaptive optics imaging which resolves the secondary of the wide pair into a tighter binary, with a projected angular separation of 0.36 arcsec, or 7 AU. The estimated spectral types of LP 714-37B and LP 714-37C are M8.0 and M8.5. We discuss the implications of this finding for brown dwarf formation scenarios.Comment: Accepted by ApJ Letter

    VITRUV - Science Cases

    Get PDF
    VITRUV is a second generation spectro-imager for the PRIMA enabled Very Large Telescope Interferometer. By combining simultaneously up to 8 telescopes VITRUV makes the VLTI up to 6 times more efficient. This operational gain allows two novel scientific methodologies: 1) massive surveys of sizes; 2) routine interferometric imaging. The science cases presented concentrate on the qualitatively new routine interferometric imaging methodology. The science cases are not exhaustive but complementary to the PRIMA reference mission. The focus is on: a) the close environment of young stars probing for the initial conditions of planet formation and disk evolution; b) the surfaces of stars tackling dynamos, activity, pulsation, mass-loss and evolution; c) revealing the origin of the extraordinary morphologies of Planetary Nebulae and related stars; d) studying the accretion-ejection structures of stellar black-holes (microquasars) in our galaxy; e) unveiling the different interacting components (torus, jets, BLRs) of Active Galactic Nuclei; and f) probing the environment of nearby supermassive black-holes and relativistic effects in the Galactic Center black-hole.Comment: 15 pages. The Power of Optical/IR Interferometry: Recent Scientific Results and 2nd Generation VLTI Instrumentation, Allemagne (2005) in pres
    • …
    corecore